Featured publications

DetecDiv, a generalist deep-learning platform for automated cell division tracking and survival analysis

Théo Aspert, Didier Hentsch, Gilles Charvin. eLife, (2022) - DOI: 10.7554/eLife.79519

In this work, we used deep learning to classify sequences of images of individual yeast trapped in microfluidic cavities to auomatize their successive divisions.

We have shown that our analysis method allows for a very accurate measurement of the replicative life span of cells, or their survival in response to environmental stress. This method, which is very general, since it works very well on several trap geometries and imaging conditions, paves the way to more systematic studies of the mechanisms that control the entry into cellular senescence.


Monitoring single-cell dynamics of entry into quiescence during an unperturbed life cycle

Jacquel Basile, Aspert Théo, Laporte Damien, Sagot Isabelle, Charvin Gilles. eLife, 10:e73186, (2021) - DOI: 10.7554/eLife.73186

In this study, we developed a microfluidic system to monitor the entry into quiescence of individual yeast cells exposed to progressive nutrient depletion caused by population growth. We used fluorescent markers to characterize the dynamics of cell reorganization during different phases of quiescence entry. Our methodology reveals the emergence of a heterogeneity of cell fates, with some cells unable to enter respiration after the diauxic shift.


Excessive rDNA transcription drives the disruption in nuclear homeostasis during entry into senescence in budding yeast

Morlot S, Song J, Léger I, Matifas A, Gadal O, Charvin G. Cell Rep, (28)2:408-422, (2019) - DOI: 10.1016/j.celrep.2019.06.032

Dans ce travail, nous avons mesuré la dynamique de l'entrée en séensecence dans des cellules individuelles de levure. En particulier, nous avons démontré expérimentalement que les mini-cercles d'ADN ribosomiques extra-chromosomaux (ou ERCs), qui sont étroitement associées au vieillissement chez la levure, s'accumulent exponentiellement bien avant que que les cellules entrent en sénescence et conduisent à une accumulation massive d'ARN ribosomique dans le nucléole et de dysfonctionnements nucléaires majeurs. Nos expériences permettent ainsi de construire un scénario temporel quantitatif conduisant à l'entrée en sénescence.


Left-right asymmetry in oxidative stress sensing neurons in C. elegans.
Quintin S, Charvin G.
MicroPubl Biol. (2022) - DOI: 10.17912/micropub.biology.000652. eCollection 2022.

Distinct mechanisms underlie H2O2 sensing in C. elegans head and tail
Quintin Sophie, Aspert Théo, Charvin Gilles
PLOS One, (2022) - DOI: 10.1371/journal.pone.0274226

DetecDiv, a deep-learning platform for automated cell division tracking and replicative lifespan analysis
Théo Aspert, Didier Hentsch, Gilles Charvin
eLife, (2022) - DOI: 10.7554/eLife.79519

A Microfluidic Platform for Tracking Individual Cell Dynamics during an Unperturbed Nutrients Exhaustion
Théo Aspert, Basile Jacquel, Gilles Charvin
Bio Protoc (2022) - DOI: 10.21769/BioProtoc.4470

Nuclear Pore Complex Acetylation Regulates mRNA Export and Cell Cycle Commitment in Budding Yeast
Mercè Gomar-Alba, Vasilisa Pozharskaia, Celia Schaal, Arun Kumar, Basile Jacquel, Gilles Charvin, J. Carlos Igual, Manuel Mendoza
EMBO J, (2022) - DOI: 10.15252/embj.2021110271

DNA circles promote yeast ageing in part through stimulating the reorganization of nuclear pore complexes
Anne C. Meinema*, Anna Marzelliusardottir*, Mihailo Mirkovic*, Théo Aspert, Sung Sik Lee, Gilles Charvin, Yves Barral
eLife, 11:e71196, (2022) - DOI: 10.7554/eLife.71196


Monitoring single-cell dynamics of entry into quiescence during an unperturbed lifecycle
Jacquel Basile, Aspert Théo, Laporte Damien, Sagot Isabelle, Charvin Gilles
eLife, 10:e73186, (2021) - DOI: 10.7554/eLife.73186

Increased levels of mitochondrial import factor Mia40 prevent the aggregation of polyQ proteins in the cytosol
Anna M Schlagowski, Katharina Knöringer, Sandrine Morlot, Ana Sánchez Vicente, Tamara Flohr, Lena Krämer, Felix Boos, Nabeel Khalid, Sheraz Ahmed, Jana Schramm, Lena M Murschall, Per Haberkant, Frank Stein, Jan Riemer, Benedikt Westermann, Ralf J Braun, Konstanze F Winklhofer, Gilles Charvin, Johannes M Herrmann
EMBO J, (2021) - DOI: 10.15252/embj.2021107913

A trade-off between stress resistance and tolerance underlies the adaptive response to hydrogen peroxide
Jacquel Basile, Matifas Audrey, Charvin Gilles
bioRxiv, (2021) - DOI: 10.1101/2021.04.23.440814


Proteostasis collapse halts G1 progression and delimits replicative lifespan
Moreno D F, Jenkins K, Morlot S, Charvin G, Csikász-Nagy A, Aldea M
eLife, 8:e48240, (2019) - DOI: 10.7554/eLife.48240

Excessive rDNA transcription drives the disruption in nuclear homeostasis during entry into senescence in budding yeast 
Morlot S, Song J, Léger I, Matifas A, Gadal O, Charvin G 
Cell Rep, (28)2:408-422, (2019) - DOI: 10.1016/j.celrep.2019.06.032

COSPLAY: An expandable toolbox for combinatorial and swift generation of expression plasmids in yeast 
Goulev Y, Matifas A, Heyer V, Reina-San-Martin B, Charvin G
PLoS ONE, 14(8): e0220694, (2019) - DOI: 10.1371/journal.pone.0220694

Self-Learning Microfluidic Platform for Single-Cell Imaging and Classification in Flow
Constantinou I, Jendrusch M, Aspert T, Görlitz F, Schulze A, Charvin G, Knop M.
Micromachines, 10: 311, (2019) - DOI: 10.3390/mi10050311


Adaptation to DNA damage checkpoint in senescent telomerase-negative cells promotes genome instability 
Coutelier H, Xu Z, Morisse MC, Lhuillier-Akakpo M, Pelet S, Charvin G, Dubrana K, Teixeira MT. 
Genes Dev., 1;32(23-24):1499-1513, (2018) - DOI: 10.1101/gad.318485.118

Multiple inputs ensure yeast cell size homeostasis during cell cycle progression  
Garmendia-Torres, C., Tassy, O., Matifas, A., Molina, N., Charvin, G.
eLife, 7:e34025, (2018) - DOI: 10.7554/eLife.34025

Controllable stress patterns in microfluidic devices
Goulev, Y., Matifas, A. , Charvin, G.
Methods Cell Biol., 147:29-40, (2018) - DOI: 10.1016/bs.mcb.2018.07.003


Two routes to senescence revealed by real-time analysis of telomerase-negative single lineages
Xu Z, Fallet E, Paoletti C, Fehrmann S, Charvin G, Teixeira MT
Nature Comm., 6:7680, (2015) - DOI: 10.1038/ncomms8680

Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development
Heckel E, Boselli F, Roth S, Krudewig A, Belting HG, Charvin G, Vermot J. 
Curr Biol., 25(10):1354-61, (2015) - DOI: 10.1016/j.cub.2015.03.038

A quantitative approach to study endothelial cilia bending stiffness during blood flow mechanodetection in vivo
Boselli F, Goetz JG, Charvin G, Vermot J. 
Methods Cell Biol., 127:161-7, (2015) - DOI: 10.1016/bs.mcb.2015.01.006

In silico control of biomolecular processes
Uhlendorf J, Miermont A, Delaveau T, Charvin G, Fages F, Bottani S, Hersen P, Batt G. 
Methods Mol Biol., 1244:277-85, (2015) - DOI: 10.1007/978-1-4939-1878-2_13


A memory system of negative polarity cues prevents replicative aging  
Meitinger F, Khmelinskii A, Morlot S, Kurtulmus B, Palani S, Andres-Pons A, Hub B, Knop M, Charvin G, Pereira G 
Cell, 159(5):1056-69, (2014) - DOI: 10.1016/j.cell.2014.10.014

Endothelial Cilia Mediate Low Flow Sensing during Zebrafish Vascular Development
Goetz JG, Steed E, Ferreira RR, Roth S, Ramspacher C, Boselli F, Charvin G, Liebling M, Wyart C, Schwab Y, Vermot J. 
Cell Rep, 6(5):799-808, (2014) - DOI: 10.1016/j.celrep.2014.01.032


Aging yeast cells undergo a sharp entry into senescence unrelated to the loss of mitochondrial membrane potential
Fehrmann S, Paoletti C, Goulev Y, Ungureanu A, Aguilaniu H, Charvin G. 
Cell Rep, 5(6):1589-99, (2013) - DOI: 10.1016/j.celrep.2013.11.013

Pulse propagation by a capacitive mechanism drives embryonic blood flow
Anton H, Harlepp S, Ramspacher C, Wu D, Monduc F, Bhat S, Liebling M, Paoletti C, Charvin G, Freund JB, Vermot J. 
Development, 140(21):4426-34, (2013) - DOI: 10.1242/dev.096768

Comparison of DNA decatenation by Escherichia coli topoisomerase IV and topoisomerase III: implications for non-equilibrium topology simplification. 
Seol Y, Hardin AH, Strub MP, Charvin G, Neuman KC. 
Nucleic Acids Res., 41(8):4640-9, (2013) - DOI: 10.1093/nar/gkt136